
Unsolvable Problems

Key Terms

• unsolvable prob-
lems
• artificial intelli-
gence
• input
• output

Overview
Computers are amazing; they are the artificial intelligence that underpins some of our 
favorite video games, they can beat human beings at checkers, chess, and Jeopardy, 
and they can even automatically and safely drive cars on the road, even with unpre-
dictable human drivers alongside them. But it turns out, computers can’t do every-
thing, and never will be able to. Such tasks, are called unsolvable problems because 
the design of a computer prevents it from arriving definitively at a solution.

This is the most theoretical topic we cover in CS50. Don’t worry if it’s a bit scary!

The Halting Problem
At this point, it is pretty clear to see the endless capabilities a computer has. It is difficult to even think of a 
problem that computers cannot solve, but let’s try. Taking a closer look at computers, it is understood that they 
require an input and produce some output. Computers can only handle the inputs they were designed to han-
dle. Take for example a calculator. It can handle inputs such as 3 + 8 and output 11, but it cannot sort an array 
of integers. Similarly, if you have a sorting program, it will not be able to handle arithmetic inputs. Let’s imagine 
that we have a third program, called halt, one that takes a given program and a problem to solve as its inputs, 
and outputs whether or not it is going to get stuck. When we pass in calculator and “3 + 5” to halt, it will print 
“not stuck”, but if we pass in calculator and “sort 1, 5, 2, 4, 9” it will print “stuck”. Sounds simple enough, but this 
program cannot exist. 

This is CS50.© 2016

Alan Turing
Alan Turing proved that an algortihm that could test whether a program 
will run forever or not can not possibly exist. Reflect on the problems 
that we’ve tackled in this course. They were all finite. Even if we are 
checking the length of word, there exists a longest word, so that prob-
lem too, is finite. With all the tools available to us, there is none that can 

CS50

Consider a program, x, that has three main functions, copy, halt, and 
negate. Copy takes its input and outputs two of its inputs, halt takes 
a program and a problem as its inputs and outputs whether it will get 
stuck or not. Negate will take halt’s output as its input. If it receives 
“stuck” it will return 0, if it receives “not stuck”, it will get stuck. Sounds 
pretty complicated, but let’s try with a simple case. If calc is passed in, 
halt determines that calc will get stuck if it tries to process “calc” since 
all it can do is arithmetic. Negate then gets stuck, which is fine. Let’s 
pass in the program x, itself as the input. Copy takes x, and outputs two 
of them, halt gets x with the input of x. Say it spits out “stuck”, then ne-
gate would return 0, which means that x, given the input x does not get 
stuck, so halt is wrong. That must mean that x with the input of x would 
be “not stuck”. Pass x to copy again, halt gets x as the program and x 
as the problem. Since outputting “stuck” was a contradiction, let’s try 
outputting “not stuck”. Negate gets “not stuck” as its input. Negate then 
gets stuck. This means that x did get stuck when x was the input, but 
halt said it would not. This means that a program like halt cannot exist. 
It is impossible for a program like halt to be right 100% of the time using 
the same algorithm.

x

halt

copy

negate

 sample
input

 sample
input

 sample
input

“stuck”
or

“not stuck”

return 0 or 
gets stuck

run infinetely and tell us if the program and its input would get stuck. In theory, we could test a program 
that is running for 1,000,000,000 seconds and output that the program got stuck, but it is plausible that the 
program could have processed the information on the 1,000,000,001th second. It is generally true that an 
infinite process can not be analyzed by a computer in a finite amount of steps.


